NETL Carbon Capture Retrofit Analyses

Systems Engineering & Analysis (SEA)

Teams and Scope

Energy Process Analysis

Energy Process Design, Analysis, and Cost Estimation

- Plant-level modeling, performance assessment
- Cost estimation for plant-level systems
- General plant-level technology evaluation and support

Advanced Technology Design & Cost Estimation

Energy Systems Analysis

Resource Availability and Cost Modeling

- CO₂ storage (saline and EOR)
- Fossil fuel extraction
- Rare earth elements
- General subsurface technology evaluation and support

Grid modeling and analysis

Environmental Life Cycle Analysis

Energy Markets Analysis

Energy Economy Modeling and Impact Assessment

- Enhanced fossil energy representation
- Multi-model scenario/policy analysis
- Infrastructure, energy-water

- Economic impact assessment Modern
- General regulatory, market and financial expertise

Process Systems Engineering Research

- Process synthesis, design, optimization, intensification
- Steady state and dynamic process model development
- Uncertainty quantification
- Advanced process control

Design, optimization, and modeling framework to be expanded to all SEA "systems"

Advanced Energy Systems through Process Systems Engineering

NETL CCS Retrofit Analysis and Modeling

SOA Post-Combustion Capture System Quotes

Systems Analysis of Capture Retrofits for Reference Plants:

NEMS

2nd Generation Post-Combustion Capture System Cost/Perf

Unit-Specific

Data

PC, NGCC, Industrial

NETL Carbon Capture Retrofits Database (internal) *PC, NGCC, Industrial Sources*

Scales retrofit costs and calculates derates for units in entire fleet

MARKAL

Analysis of Cost Metrics for Existing Fleet

Why Analyze CCS Retrofits?

- Evaluate scenarios where there is a price on CO₂ emissions
- Consider economic feasibility of power plants or industrial sources that sell CO₂ for Enhanced Oil Recovery (EOR)
- Analyze benefits of CO₂ capture R&D on existing fleet of power plants and industrial sources

Carbon Capture Retrofit Modeling Overview

- 264 GW of existing coal and 242 GW of existing NGCC capacity in U.S.*
- CO₂ also available for capture from industrial sources; publicly available information from EPA's Greenhouse Gas Reporting Program
- Access to heat rate, nameplate capacity, O&M costs, CO₂ emissions, pollution controls, online date, other relevant data from which to estimate CCS retrofit costs
- Based on similar results of NETL studies, employ a factored approach to existing fleet to estimate cost, performance impact of CCS retrofits
- Determine sensitivity to capacity factor or financing assumptions, evaluate impact of advanced CCS R&D, assess benefits of EOR opportunities

CO₂ Capture Retrofit – Existing Coal Units

- Study in progress Carbon Capture Retrofit of Existing Coal Units
- Expected publication late 2017

Subcritical Pulverized Coal with CO₂ Capture

Pulverized Coal Retrofit Study Assumptions Pulverized Coal Retrofit Study Assumptions

Steam Conditions (psig/ºF/ºF)	2,400/1,050/1,050
Coal	Illinois #6 Bituminous
Condenser Pressure	2" Hg
SO ₂ Control	Wet FGD
NOx Control	Low NOx burner with overfire air, SCR
Particulate Control	Fabric filter
Hg Control	ACI
CO ₂ Control	Cansolv
CO ₂ Capture Efficiency	90%
CO ₂ Fate	Offsite saline storage
CO ₂ Pipeline Transport Distance	100 km

Subcritical PC Retrofit Results

Retrofit Capex	\$726,600,000
Heat Rate (pre retrofit)	8,740 Btu/kWh
Heat Rate (post retrofit)	11,300 Btu/kWh
CO ₂ Capture Rate	240,218 Lb CO ₂ /hr
Energy Penalty	≈0.14 kWh/Lb CO ₂ captured
Incremental O&M	\$18.8/MWh

CO₂ Capture Retrofit – Existing NGCC Units

- Study in progress Carbon Capture Retrofit of Existing NGCC Units
- Expected publication late 2017

NGCC with CO₂ Capture

NGCC CCS Retrofit Study Assumptions

Steam Conditions (psig/ºF/ºF)	2,400/1,050/1,050
Gas Turbine	2 x GEE 7FA
Turbine Inlet Temperature	2,479 ºF
CO ₂ Control	Cansolv
CO ₂ Capture Efficiency	90%
CO ₂ Fate	Offsite saline storage
CO ₂ Pipeline Transport Distance	100 km

NGCC Retrofit Results

 NGCC cost of electricity highly sensitive to gas price!

Retrofit Capex	\$647,300,000		
Heat Rate (pre retrofit)	6,629 Btu/kWh		
Heat Rate (post retrofit)	7,466 Btu/kWh		
CO ₂ Capture Rate	445,486 Lb CO ₂ /hr		
Energy Penalty	≈0.19 kWh/Lb CO ₂ captured		
Incremental O&M	\$6.15/MWh		

CO₂ Capture Retrofit Difficulty Factor

- Power plant retrofits typically space constrained
- A retrofit "difficulty factor" can be applied to capital costs to reflect sitespecific challenges
- Factor only applied to capex, so impact on total cost of electricity can be easily assessed
- NETL Quality Guidelines for Energy System Studies "Estimating Plant Costs Using Retrofit Difficulty Factors*"

Incidental Retrofit Project Costs

- Existing coal units may require other environmental upgrades when adding CO_2 capture equipment
- Cost for NOx (SCR), SO₂ (FGD) upgrades should be considered to reflect all-in project cost
- CCS retrofit is a long-term bet on plant viability, may also want to consider cost for conversion from wet to dry cooling in certain regions (50% water consumption increase when capturing 90% CO₂)

Retrofit Financing Considerations

- NETL studies typically assume 30 year economic life (reflected in capital charge factor)
- What is expected remaining useful life of an existing coal unit retrofitted with CCS? Majority of existing coal fleet built in the 1970's.
- Financing assumptions needed to reflect scenarios shorter than 30-year default

Retrofit Financing Considerations

Impact of economic life on cost results

Opportunity Cost of CCS Retrofits

- In addition to incremental capital, O&M costs, lost power sales revenue due to plant derate needs to be considered
- Useful way to determine minimum CO₂ EOR sale price to justify CCS retrofit

Annualized Capital and Incremental O&M Costs for Retrofit

Annual Revenues Foregone Due to Lost Generation (Derate)

Annual Revenues from Sale of Captured CO₂

Cost Scaling Methodology

- Capital costs for CO₂ capture equipment scaled from reference plant costs, based on amount of CO₂ removed; do NOT scale based on plant output
- Operation and maintenance costs scaled from reference plant costs, based on total plant capital cost
- Retrofit difficulty factor can be applied to capital costs
- Year dollar basis can show historic market fluctuations
- NETL Quality Guidelines for Energy System Studies "Capital Cost Scaling Methodology*"

Parasitic Power Load Scaling Methodology

• Parasitic power load for retrofitted units can be scaled from reference cases, based on CO₂ captured (Lb/hr); do NOT simply add a % derate of net power

• Energy Penalty (kWh/Lb
$$CO_2$$
) =
$$\frac{MWh_{non-capture} - MWh_{capture}}{CO_2 \ captured \left(\frac{lb}{year} @ 100\% \ CF\right)}$$

• Allowances for other environmental (or other) upgrades (SCR, FGD, dry cooling) can also be made as needed

Net Derate Projections

Net Output Penalties of CCS Retrofits

CO₂ Capture Retrofit – Industrial Sources

Cost of Capturing CO₂ from Industrial Sources

January 10, 2014

CO₂ Capture from Industrial Sources* –
Public Report

Industrial Source CO₂ Capture

- Does the industrial source represent a target rich opportunity?
- CO₂ concentration in stack gas is a consideration
- Do industrial source capture conditions (temperature, pollutant levels) align with capabilities of current CO₂ capture technologies?

Industrial Source CO₂ Capture

Industrial Process	Reference Plant Capacity	CO ₂ Source Stream	CO ₂ to Product Ratio (tonne CO ₂ /tonne	Source Stream CO ₂ Concentra-	Source Stream CO ₂ Partial	Cap (M tonnes	CO₂/year)	Breakeven Cost of Capturing CO ₂
			Product)	tion (mol%)	Pressure (psia)	Reference Plant	All U.S. sources	(\$/tonne CO ₂)
			High Purity	Sources				
Ethanol	50 M gal/year	Distillation gas	0.96	100	18.4	0.14	40	30
Ammonia	907,000 tonnes/year	Stripping vent	1.9	99	22.8	0.458	6	27
Natural Gas Processing	500 MMscf/d	CO ₂ vent	N/A ¹	99	23.3	0.649	27	18
Ethylene Oxide	364,500 tonnes/year	AGR product stream	0.33	100	43.5	0.122	1	25
Coal-to-Liquids (CTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	8.74	-	9
Gas-to-Liquids (GTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	1.86	-	9
	Low Purity Sources							
Refinery Hydrogen	59,000 tonnes/year	PSA tail gas	10.5	44.5	8.9	0.274	68	118
Iron/Steel	2.54 M tonnes/year	Plant Total COG PPS COG/BFG ³	2.2	N/A 23.2 26.4	N/A 3.4 3.9	3.9 2.75 1.16	49	99 99 101
Cement SCR/FGD Sensitivity	992,500 tonnes/year	Kiln Off-gas	1.2	22.4	3.3	1.14	80	100 127
Coal-fired power plants	550 MW	Flue Gas	NA	13.5	2.0	4.13	2,5454	77 ⁵⁶

High/Low CO₂ Purity Results Comparison

	Refinery Hydrogen (Low CO ₂ Purity)	Ethylene Oxide (High CO ₂ Purity)		
Source Stream CO ₂ Purity	44.5 mol %	100 mol %		
	Breakeven Cost, \$/tonne CO ₂	Breakeven Cost, \$/tonne CO ₂		
Capital Charges	41.37	9.85		
Fixed O&M	12.57	3.47		
Variable O&M	18.86	5.20		
Consumables	2.71	0.27		
Purchased Power	11.24	5.49		
Purchased Natural Gas	25.88	0.00		
Total Breakeven Cost	112.64	24.28		

Capturing CO₂ from Industrial Sources

NATIONAL ENERGY TECHNOLOG LABORATOR

Incremental CO₂ Supply versus Breakeven Selling Price

Capturing CO₂ from Industrial Sources

Breakeven Selling Price as a Function of CO₂ Concentration

Industrial Source Retrofit Methodology

- Facility data for industrial sources based on EPA's Greenhouse Gas Reporting Program¹ and FLIGHT data²
- Plant capacity in report based on typical sizes, cost and performance postretrofit based on source report, and applied using a scaled approach
- Key parameters of interest include payback period, financing structure, supplemental power or natural gas price

Cumulative CO₂ Supply

Large capacity available, at increasing cost of capture

Future Work

- Finalization of existing coal, NGCC retrofit source reports
- Continued development of internal version of retrofit model
- Development of public version of retrofit model

Contact Information

Eric Grol

Energy Systems Analyst

Eric.grol@netl.doe.gov

412-386-5463

Thanks to everyone involved in the development of this effort!!

